
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLULDS, VOL. 22, 85-101 (1995) 

ADAPTIVE SOLUTIONS FOR UNSTEADY LAMINAR FLOWS 
ON UNSTRUCTURED GRIDS 

SUMMARY 
An adaptive finite volume method for the simulation of timedependent, viscous flow is presented. The Navier- 
Stokes equations are discretizad by central schemes on unstructured grids and solved by an explicit Rungo-Kutta 
method. The essential topics of the present study are a new concept for a local RungcKutta time-stepping scheme, 
called multisequence RungcKutta, which reduces the severe stability restriction in unsteady problems, a common 
grid generation and adaptation procedure and the application of dynamic grids for capturing moving flow 
structures. Results are presented for laminar, separated flow around an aerofoil with a flap. 

KEY WORDS. Navicr-Stokes equatim; timedepmdmt, separated flow; umtwmd, adaptive, dynamic grids; local time- 
stepping scheme 

1. INTRODUCTION 

Methods of solution based on unstructured grids enable a high degree of flexibility with respect to 
solution-adaptive grid concepts. Grid cells can be added, removed or deformed during the solution 
according to criteria derived h m  requirements of accuracy. Therefore such adaptive methods are in 
principle ideal methods to deal with flow problems of different characteristic scales, where a high 
resolution is required in parts of the integration domain while in other parts a moderate resolution is 
sufficient. In general the locations of high-resolution ranges are not known u prion. In non-adaptive 
methods the solution has to be estimated before arranging the grid or a sufficiently fine, global grid has 
to be used. Adaptive grid methods find these locations ‘automatically’during the solution and adapt the 
grid to correspond to the actual solution. Thus the higher effort per grid point for unstructured, 
adaptive methods can be compensated by the sparse, effective use of grid cells. 

The difficulties in formulation and application of an adaptive method depend strongly on the 
character of the solution. For inviscid flows, where besides geometrical features only distinct 
discontinuities (shocks) appear, unstructured grids are very suitable, since their geometric fieedom and 
the ease of adapting meshes to local requirements are often more important than the advantages of 
structured meshes in terms of efficiency per node computed. A large number of applications can be 
found in the literature (see e.g. References 1-3). 

Solution of the Navicr-Stokes equations at high Reynolds numbers are in general much more 
difficult to adapt and arc much less highly developed than for inviscid flows. A crucial problem is the 
presence of very different viscous scale lengths in different directions, e.g. body length, boundary layer 
thickness and vortex extensions. For adaptive methods the problem arises that often more than one 
adaptation criterion, different in value and direction, has to be satisfied- Another numerical difficulty is 
the genenition of deformed cells, e.g. ibt, triangular grids necessary to meet the anisotropic solution in 
thin shear layers. These deformed cells can intmduce inaccuracies and an additional stiffness which 
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impairs the performance of the solution algorithms. Despite these difficulties, various authors are 
concerned with viscous computations on unstructured grids (see e.g. References 410). 

A special challenge for adaptive methods is the computation of viscous, unsteady flows, which is the 
topic of the present paper. Many viscous flow problems, in particular at high Reynolds numbers, can 
become unsteady by self-induced flow separation, from which systems of moving vortices (vortex 
streets) develop. Typical examples are the flow around aerofoils at high angle of attack and that behind 
blunt bodies. The demands on an adaptive method for such flows are high. Firstly the algorithm has to 
be sufficiently accurate in time. Using an explicit scheme, as done here, stability restrictions lead to a 
severe reduction in efficiency owing to the very different sizes of grid cells. To reduce this effect in 
timedependent flows, two extended versions of an explicit time-stepping Runge-Kutta scheme were 
developed and tested. The two versions are based on the idea of increasing the stability limit locally 
either by increasing the number of intermediate stages of the RungeKutta scheme or by applying 
multiple sequences of the RungeKutta schemes with a constant number of stages. 

To utilize the advantages of adaptive algorithms for unsteady solutions, a moving, dynamic mesh 
should be used to adapt the details of the flow so that zones of fine resolution move with the critical 
flow structures. A corresponding attempt is presented here based on a combination of a static mesh 
superposed by an d d i t i o ~ l  dynamic mesh with timedependent grid cell distributions. 

The quality of the adaptive, timedependent algorithm is demonstrated by computational results for 
laminar, separated flow over an aerofoil with a flap. 

2. GOVERNING EQUATIONS AND SPATIAL DISCRETIZATION 

2. I .  Governing equations 

The numerical solution is based on the two-dimensional, time-dependent Euler or Navier-Stokes 
equations written in conservative integral form: 

1 Q t d r + h  ( F - q d y - 4  ( C - R ) & = O .  

Here 

Q =  , F =  

J A  J A  

where Q is the vector of conservative variables, F and G describe the inviscid flux contributions (Euler 
terms) and S and R are the viscous terms in a Cartesian frame (x,y, 1). The abbreviated terms in the 
fluxes S and R are s4 = UT, + VT + qx and r, = 1 4 7 ~  + np + q,,, with T,, T~ and T~ the 
components of the stress tensor of larmnar flow and qI and q,, the components of the heat flux vector a = IVT. The gas is assumed to be perfect. 

xv 

2.2. Spatial discmtization 

A finite volume method is applied to discretize the conservation equations (1) in a mesh of 
triangular control volumes around a point P(x,y). The discrete equations for the volume-averaged 
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Figure 1. Control volumes for node P Figure 2. BPsic cell for C ~ B C  P1-P2 

conservative variables Q on a node P read 

where T is the area of the control volume and At is the time step. The residual Res,(P) is the steady 
state operator, which consists of the discrete fluxes over the boundaries of the control volume. 

The finite control volumes for the inviscid fluxes are defined here by a cell vertex arrangement, 
resulting in a centd scheme of simple algorithmic structure. The boundaries of a cell vertex control 
volume consist of natural edges of the mesh, as sketched in Figure 1 (outer contour). 

For each ~tura l  non-boundary edge the connectivity is stored in a basic cell consisting of the two 
nodes forming the edge as well as the opposite nodes of the two neighbouring triangles (Figure 2). In 
the cell vertex case the inviscid fluxes are computed as an average of neighbouring data over the edge 
P1-P2 and distributed to the nodes P3 and P4. 

Algorithms with central discretizations require additional artificial damping terms. The damping 
terms are used as high-fraquency filters and 8n computed as fourth diffemces D, of the conmvative 
variables. This is done by first computing the second differences D2 of variables for each node in the 
form of an unweighted, discrete Laplacian. The fourth differences D4 are then computed as the second 
differences of the values 4. This formulation cormponds in essence to that proposed by Mavriplis" 
and offers a cheap way of computing the damping tenns. Obviously this simple formulation does not 
hold for a linear field in a strongly stretched mesh; however, the damping terms are consistent and 
small by definition. 

The scheme based on central formulations of the inviscid tenns has proven to be well-suited not only 
for the flows considered here but also for supersonic flows at moderatt Mach numbers. If, however, 
strong shock waves are embedded, higher-order upwind schemes in conjunction with a nodeantred 
arrangement achieve better results and are preferred for such problems in the place of central 
schemes. lo 

The viscous terms are approximated throughout by a nodeantred formulation. The control volumes 
in nodecentred formulations are surrounded by a set of lines from the Ccntrts of the triangles to the 
centres of the edges (Figure 1, broken line). First derivatives of the corresponding quantities of viscous 
fluxes are calculated in each triangle and projected to the boundary segments of the nodecentred 
volume. These fluxes are distributed to the nodes P1 and P2. 

2.3. Memory access 

The computations were performed on an RISC workstation. Owing to the limited size of the data 
storage memory, it is essential to access the memory in as ordmd a way as possible, allowing the 
computer to load packages of data for processing and thus avoiding wait states for memory requests. 
There exist seweral methods for mesh reordering. However, a compromise between optimizing memory 
access and the execution time for reording has to be made. Since in our case, owing to the adaptive 
mesh, fkquent reordering is rqumd, a simple and very fast method is used. 
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1. All nodes are sorted in a Cartesian direction. 
2. The edges are sorted with increasing node addresses. 

Although simple, the performance could be increased by a factor of two compared with unordered data 
access. 

3. INTEGRATION IN TIME 

Integration in time is carries out by an explicit time-stepping RungeKutta scheme. The explicit 
structure is well-suited for computations on unstructured grids because of its small range of coupling 
with neighbouring cells. The Runge-Kutta time-stepping scheme is an approved concept for solutions 
of the Euler and Navier-Stokes equations, in particular for steady state computations in combination 
with additional acceleration Techniques such as local time steps, residual smoothing and multigrid. 

For time-accurate computations the efficiency of an explicit scheme can be essentially impaired by 
the stability restriction if the sizes of the discrete control volumes differ very strongly. Then only the 
smallest value of all local time steps can be used, although in large parts of the integration domain 
much larger steps could be chosen according to the stability limit. This situation is typical for adaptive 
solutions where cells are concentrated in regions of strong changes and are removed in other ranges. 

To overcome these severe restrictions for unsteady computations, two improved versions of the 
explicit Runge-Kutta scheme were investigated and tested here. One version uses locally different 
numbers of intermediate stages and the other version employs locally a multiple number of Runge- 
Kutta sequences consisting of a constant number of intermediate stages. Both versions are based on the 
idea of increasing the stability limit locally, where necessary, such that for all cells a large, global time 
step (larger than the smallest one) can be used. In this case computational time can be saved, since 
additional work is only necessary for cells with smaller characteristic time steps. 

This principle itself is not new. 12*13 For the Euler or Navier-Stokes equations, however, a decoupling 
in time between neighbowing nodes is not allowed. The reason is that the leading terms of these 
equations are first or second derivatives in space. The calculation remains consistent in time if an 
appropriate synchronization is used such that each evaluation of residuals uses quantities from 
neighbowing points which are on the same time level. 

In the following the basic Runge-Kutta scheme will be described briefly and both extended versions 
will be discussed in more detail. 

3.1. Basic Runge-Kutta scheme 
The basic five-stage Runge-Kutta scheme reads 

Q' = @ + al * CFL . At. Re&, 

@=@+a2-CFL.At.Resk, 

@=@+am.CFL.At.R@-', 

@=P* 
where Nk is the number of stages, ak are the Runge-Kutta coefficients, @ is the set of basic variables 
and Q' to are represented by one set of intermediate variables. Generally five stages are used hem 
with coefficients ak determined for second-order accuracy in time and maximum CFL number. 
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For the next two subsections the following definitions arc useful. 

1. The basic time step AZb, i is the shortest time step in which characteristics starting anywhere at the 
cell intcrhcc for a node i reach that node i. It is a local quantity and corresponds to the time stcp 
for CFL = 1. 

2. The minimum basic time step Atb, min is the lowest value of Atb, from all nodes. 
3. Update means the action of updating intermediate variables in the Runge-Kutta cycle. 

Evaluation (E) is the action of determinin g a new residual. Its prerequisite is an update. Storing 
(S) is the action of storing intermediate variables onto the basic variables. Its prerequisite is an 
update. 

3.2. Runge-Kutta scheme with variable number of stages 

The idea of this approach uses the fact that the largest CFL number of a time-stepping scheme given 
by a stability analysis haeases with the number of intermediate stages. For a corresponding linear 
equation the largest CFL number is related to the number Nk of RungcKutta stages by 

C F L . ,  = Nk- 1. (3) 
Since the ‘wont’ node runs with a very large number of stage, A%.,-, and therefore with a high 

CFL number, other more stable nodes i may perform the same time step with a l o w  number of stages, 
Mi. Using the theoretical values of equation (3), one obtains the required number of stages per node i 
as 

+ 1. mi = (& - 1)- Atb, min 

1 
(4) 

As discussed above, each nsidual evaluation requires neighborn at the same level of time also at 
the intermediate levels. For the upper stages this is automatically the case if the time-accurate Rungo 
Kutta caefficients 

ak = (M - A + I)-’ ( 5 )  

are used, where A is the stage within the cycle. From high to low these coefficients are 1, !,+, $, . . . . A 
problem arises for the lower stages if two neighbours qu i r e  different numbers of stages. Let j be the 
neighbour of i with the following condition: MI > Mj. For the stages 1 Q k c MI - Nkl the node j has 
to be updated, although this would not be required for its own RungcKutta cycle. These low-stage 
updates for the nodej 8n done using the residual computed at stage 0, i.e. the beginning of the Runge- 
Kutta cycle. The nodej is allowed to be updated with old residuals, since there is no characteristic 
starting at its cell interface at stage 0 that may overrun it in the first %. - Mj stages. This is in contrast 
with equation (4). Nodes farther away do not need to be on time if none of their neighburs requires a 
residual evaluation. 

Gmuping concept. We would probably lose all potential gain in performance if each node werc 
treated individually. Thus a grouping concept is required Groups are identified by the number of 
states, Mi, requind by their nodes. Since the variety of basic time steps &b,i is large, it is also 
appropriate to choose a large variety of stage numbers 4. In our computations we choose groups with 
the following numbers of stages: 

Mg = 2-8, (6) 

where g is the group index and ng is the number of groups. 
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Figure 3. Evolution in time for RungtKuna scheme with vanable number of intermediate stages. Example for thrrc groups 
based 011 powm of two. U. update; E, evduatc residual; S. storing; T = t/(CFL.&,-) 

Note that the number of stages for groups, Equation (6). may be chosen in any other convenient 
monotonically decreasing order. Figure 3 shows an example for a three-group Runge-Kutta scheme 
based on powers of two. After analysing the limits for each node, Equation (4), they are inserted in the 
groups with the next higher value Nk,, ensuring that neighbowing nodes never have a group index 
difference greater than one. This is done by a recursive loop over all edges as they address 
neighbowing nodes. The edges themselves are sorted using the same grouping concept. All edges get 
the lowest group index of the four nodes they support (see Figure 2). 

Evaluation and update rule. Since the number of stages in the groups decreases monotonically with 
the p u p  index, a residual evaluation for group g is always accomplished by an evaluation of all 
groups from 1 to g - 1. We may therefore formulate the following evaluation (E) and update rule. 

For the residual evaluation (E) up to group g the fluxes over all edges in groups 1 to g have to be 
computed. This requires a previous update (v) of all nodes in groups 1 to mink + 1, ng). 

It has to be mentioned that there is a slight time delay for the fourth-order damping terms D.,, since 
these terms require data from up to the second neighbouring cells. The effect is negligible if the second 
differences D, (see Section 2.2) from the lower time level are stored and thus available. 

Computational eflciency. Test calculations have shown that the concept of a variable number of 
intermediate stages performs sufficiently well, but the algorithm did not improve its computational 
speed as much as expected from the linear theory. The essential reason is that the CFL number of the 
non-linear system of equations does not rise with the number of stages as expected fiom the linear 
theory, Equation (3). Upon testing the basic versions of the Runge-Kutta scheme with various numbers 
of stages, it was found that a three-stage Runge-Kutta scheme with CFL = 1 -2 runs well, while a 64- 
stage Runge-Kutta scheme fails except with CFLG8.0. The relatively low CFL condition for large 
stage numbers reduces considerably the global advance in time. Computations with the Runge-Kutta 
scheme with a variable number of stages result in a speed-up factor of only around two compared with 
a carefully tuned five-stage basic algorithm. 
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3.3 Multisequence Runge-Kutta scheme 

The discouraging results of the Runge-Kutta scheme with a large number of stages means that we 
probably went in the wrong direction. Experiences in many applications have shown that the Runge- 
Kutta scheme is most efficient in non-linear cases for a moderate number of intermediate stages. 
Keeping the number of stages constant now, usually between three and five, the maximum time step 
can be increased by employing a sequence of complete Runge-Kutta cycles locally, where the number 
of cycles can vary from point to point. Thus one Runge-Kutta cycle at a node i may be a &tion of a 
cycle of another node j .  

The cycle fraction is computed in a similar way as described in the previous subsection. Again 
compared with the worst condition, the cycle M o n  is defined as 

ci=-----. min 

i 
(7) 

If, for example, a node i has to perform one cycle, the worst node has to perform more than one cycle, 
namely I/Ci cycles. 

Sjmchmnization und pup ing  concept. To ensure accuracy in time, the sequences and intermediate 
stages have to be synchronized. Essential for the evaluation of the residuals is to provide updated 
variables at neighbouring nodes which are on the same time level. 

The levels of the intermediate stages are determined by the coefficients ak of the Runge-Kutta 
scheme. The following set of coefficients has allowed synchronization: 

at = (yy (8) 

where again Nk is the number of stages and R is the stage. From high to low these Coefficients are 1, k, 
f ,  i, . . . . Note that second-order time accuracy is guaranteed, since the two highest coefficients are 1 
and f and that the set is near the set of maximum CFL number. With the coefficients (8) the time levels 
fit each other if the cycle fractions Ci are powers o f f  (see Figun 4). Following the grouping idea 
mentioned in the previous subsection, groups of the same cycle fraction are introduced 

C , = ( f ) g - ' ,  g = 1 , 2 , 3 ,  ... . (9) 

All nodes are now analysed for their individual cycle fraction and then inserted in the group with the 
next higher value C,. Again two neighbouring nodes may never have a p u p  index difference greater 
than one. Edges are grouped as in the previous subsection. They get the lowest group index of the four 
nodes they support. 

Evaluation and update rule. The evaluation and update rule is the same as formulated for the 
scheme with a variable number of stages. Additionally, a storing (S) is performed for all members of 
groups reaching the end of a cycle. A complete time step is finished when the group with the lowest 
cycle fraction, 1.e. the group with the highest index g = ng, has finished one cycle. The physical time 
for this step is 

At = CFL * At,,- * 2",-', (10) 

where CFL is the CFL number for one Runge-Kutta cycle. Figure 4 shows an example for a three- 
group, three-stage Runge-Kutta scheme. 

Computational eficiency. The multisequence Rung*Kutta scheme was applied to the problem of 
viscous, umteady flow around an aemfoil, as described later. The multisequence RungeKutta scheme 
with three stages and six p u p s  was compand with the basic five-stage scheme. After several 
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F i p  4. Evolution in time for multiscqwux time-stepping scheme. Example for thne groups and three stages. U, update; 
E, evaluate midual, S, storing; T = r/(CFL.&,,) 

thousand time steps of the basic scheme the solutions of the two methods were identical at the same 
physical time, which confirms the time consistency of this concept. The measured gain in 
computational time was a factor of six compared with the basic scheme. This means that the 
multisequence Runge-Kutta scheme is much more effective for unsteady problems than the scheme 
with a variable number of stages for the same example (factor of two). 

A higher number of groups would increase the speed-up factor of the multisequence Runge-Kutta 
scheme, since most of the nodes still reside in the last p u p .  On the other hand, the timelaccuracy 
would then become critical. It should be mentioned that the speed-up factor is strongly dependent on 
the test case. 

Compurkons with other time integmtion schemes. In comparing the efficiency of the proposed 
method with what is attainable by other enhanced time integration schemes, it is essential to note that 
the present multisequence Runge-Kutta scheme reduces the local stiffness and a gain is achieved only 
if the allowable time steps and cell sizes, vary essentially. 

The scheme presented here can be compared with a similar approach, namely domain splitting for 
explicit schemes as proposed by Lijhner et ul? The basic idea of this scheme is to split the whole 
domain into subdomains where a common time step is used. To achieve time consistency, the 
neighbouring domains are coupled via overlapping zones. 

In contrast with domain splitting, the present multisequence Runge-Kutta scheme acts on each node 
locally and contains implicitly the time coupling between neighbouring nodes owing to the 
synchronization concept. The advantage is that the grouping of nodes and edges no longer requires any 
overlapping zones or special treatment on domain boundaries. Therefore the implementation is 
relatively simple and very flexible in terms of local time step restrictions. The computational overhead 
is so low that the grouping of nodes and edges can be done prior to each global time step, which 
enables the use of this algorithm for dynamic meshes. 
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Multigrid schemes are able to increase the overall efficiency, but the number of grid levels, and 
consequently the convagence, is restricted in unsteady computations for reasons of accuracy in time. 
Besides, additional convergence losses of multigrid schemes arise for strongly anisotropic grids, a 
typical effect in computations of high-Reynolds-number flows. Numerical expiments with a time- 
accurate FAS multigrid method for a similar problem (vortex street behind a cylinder) but on structured 
grids have shown a +-up factor for multigrid of about two against a single-grid, basic five-stage 
Runge-Kutta scheme.'4 

Implicit time integration schemes also reduce the problem of local stifhess and allow a much larger 
time steps than explicit schemes. On the other hand, the time accuracy can be impaired in regions with 
small physical scale lengths where the local CFL number is large. A decrease in the global time step in 
such cases would reduce the efficiency of the implicit method. 

4. MESH GENERATION AND ADAPTATION 

Unstructured mesh generation is a mixed discrettxmalogue optimization problem. The number of 
points and their connections to triangles are discrete; the position of the points can be considered as the 
analogue part. Such optimization problems are approximated by interchanging solutions of the 
analogue and discrete parts. 

The generation consists of several tools, as described in the following, which act together on a 
closed triangulation. The process might be interrupted for a flow computation and continued for a 
following adaptation. Thus the steps of the mesh optimization problem are common for the generation 
as well for an adaptation of the mesh. 

The applied method is a field methad. The very first step is the generation of a mesh consisting of a 
triangulation between given boundary points of the domain. This input is produced by a rising bubble 
triangulation 

4.1. Genemtion tools 

Local mesh density. This is represented by the locally preferred length Gk of the edges of a triangle 
and is stored per node. 

For boundary points this quantity is the length of the longer of the two boundary cdges mund such 
a point multiplied by a statistical factor. 

For interior points a smooth variation in the size of triangles within the boundaries of the domain is 
desired. This requires the solution of a boundary value problem for the local mesh density. Since the 
boundary points and edges of the domain are known at the beginning of the genmtion process, the 
function Gk can be computed in advance; it does not therefore take part in the optimization process. 
However, there is no mesh yet to support the solution. Therefore the quantity G, for the interior nodes 
is computed during the development of the mesh. This is done in a point GausAeidel fashion by 
solving the equation 

v - = o .  *o 
Another very common approach is to provide a mesh density function on a background mesh. This 

approach was not used, since more interaction would be required. 

Point insertion. Additional points are inserted in the centre of all triangles under the following 
condition. At least one of the edges is longer than the local quantity Gk, defined above and none of the 
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neighbouring triangles has already been refined in the same insertion loop. The insertion is done in this 
sparse way in order to avoid a sudden point overflow. 

Additional boundary points are inserted in the centre of the boundary segments. This may only be 
necessary in conjunction with stretching (see next subsection). 

Edge reconnection. Two edge reconnection tools are employed, both based on diagonal swapping. 
The aim of the first one is to generate triangles which fit the Delaunay criterion. The second one 
reorganizes the mesh to obtain a trianguhon with, as far as possible, six triangles around a common 
node. Since the two tools conflict, a compromise is taken. 

Smoothing. Smoothing is done to increase the grid quality by mursively moving the points to 
optimal positions. The smoothing procedure is based on the circumcircle areas of the triangles and 
formulated as the minimization of a sensitive quantity TS for all triangles of the mesh: 

where A&) is the circumcircle area of triangle i, A,(i) is the area of triangle i, ntr is the number of 
triangles, w is a weighting term for balanced triangle sizes and Gk(i) is the average quantity Gk for 
triangle i. 

Depending on the weighting exponent w, the triangle sizes or their forms are more important. For 
w = 1 the criterion takes care only of the forms of the triangles and disregards their sizes; thus zones of 
higher and lower density can appear. The problem arises only in the vicinity of points surrounded by a 
number of triangles, "D, not equal to six. The reason for this problem is the fact that triangles of 
number unequal to six surrounding one point cannot be equilateral. To compensate this drawback, all 
the triangles consisting of points with different values n D  are geometrically transformed according to 
those numbers before being processed by the smoothing procedure. The transformation takes care of 
the fact that an optimal intemal angle adjacent to a point is a* = 2n/nD. A triangle with three optimal 
internal angles would be transformed into an equilateral triangle; this form is considered optimal in the 

The minimization is carried out by a pointwise, two-dimensional Newton method, i t e d h g  spatial 
smoothing p d u r e .  

derivatives of the quantity to be minimized to zero. 

where Ts(P) is the part of Ts influenced by the position of the node I? This is the sum of the sensitive 
amounts for all triangles having the node P as vertex. X(P)  and Y(P) the co-ordinates of the node I? 

To ensure global minimization of Ts, the pointwise minimization is performed recursively in a point 
Gauss-Seidel procedure with unsorted address sequences. 

This smoothing procedure consumes a considerable amount of computational time compared with 
other methods, e.g. Laplacian smoothem, averaging the location of neighbouring points. The 
advantages, however, that there may not appear any invalid triangulations and that too flat triangles 
are avoided, which is important for unsteady flow computations with global time stepping. 

4.2. Adaptation by virtual stretching 

The aim of the generation procedure, as described above, is to genemte a smooth homogenmus 
triangulation without any directionality. Only the density function was used to allow a smooth change 
between boundary lines with smaller or longer segments. Virtual stretching is used to generate flat 
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triangles and as an additional adaptation tool. The implementation is rather simple Mesh generation no 
longer proceeds in the physical plane but in a local@ stretched one. Transformation back to physical 
co-ordinates yields meshes with anisotropic resolution or refined zones. 

Stretching is internally rep~sented  by symmetric 2 x 2 matrices for each point of the developing 
mesh (generation) or the previous mesh (adaptation): 

a l l  a12 
.=( .I2 “22) .  

The stretching caused by such a transformation matrix is dependent on the angle 0 in the Cartesian 
plane. It is defined as the projection of the transformed unit vector in the direction of 0 onto this 
original direction: 

S,(0) = @) * (A ’ a(@)). (15) 

Tvpes of stretching 

The way in which the stretching acts is best understood for the transformation of a unit circle. 
Isotopic or scalar stretching shows no special orientation in the plane. A unit circle would be 

transformed into a larger circle. The stretching matrix is the unit matrix multiplied by a factor. The size 
of the triangles in physical space is reduced by this htor.  

Anisotropic or tensoriuf stretching is the more general case. A unit circle would be transformed into 
any ellipse concentrically containing it. The scaling length of the triangles in physical space is reduced 
according to the length of the semiaxis of this ellipse. 

Unidirectional or vectoriuf stretching is a special case of anisotropic stretching. A unit circle would 
be transformed into an ellipse tangent to the unit circle in the direction of the smaller semiaxis. 

Computing the stretching matrices 

Suppose that the mesh resolution in physical space is to be locally increased by a given factor R, in 
the direction of a,, while in the direction O2 perpendicular to O1 the resolution is to be increased by a 
factor R2. 

and 
R, = S,(0,) in the direction of O2 while generating the mesh. 

This requires local stretching of the domain by a Factor RI = S,(@,) in the direction of 

Regarding the transformation of unit vectors in the two perpendicular directions, one obtains 

R1381) = A * ‘4@1), R23@2) = A - 3 9 2 ) .  8 2  = 8, 4- n/2. 

The matrix A that satisfies these equations reads 

Rl sin2 (0,) + R2 cos2 (el) 
(R, - R2) sin (0l)tOS ( 0 1 )  

(R1 - R2) sin (el)cos (el) 
R1 C O S ~  (01) + R2 sin2 (01) 

Combining sevmal stretchingproperties. Special carc is taken to combine different local resolution 
requirements, since several features are considered. This is done by a two-dimensional maximizition 
procedure. Input are the stretching matrices A l ,  A2,  . . , from all featuns to be considered for the 
regded location. The h i r e d  output of the pointwise maximization is a matrix A, containing all 
stretching properties of the input matrices with minimized determinan 1. 

S,=(@)> max (SA,(0),  SA2(0), . . .) for 0 5 0 < K, det (A,) = min. (16) 
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The minimum determinant is desired to minimize the number of points in the later mesh, since the 
determinant of the stretching matrices is the relation of areas between the virtual and physical planes. 

Because of the difficulties in solving this problem, a recursive routine is applied which is able to 
maximize two matrices in one step. If more than two stretching matrices have to be combined, the 
previous maximum is kept to be maximized with the next input matrix. Note that if more than two 
matrices are involved, the exact minimum possible determinant is not obtained. 

Features causing stretching 

complete, since only the features used for the present computations are presented. 
Several features require different minimal resolutions in different directions. The list below is not 

Vicinity of walls. The boundary layer of viscous flows next to solid surfaces has to be resolved by 
flat triangles oriented along the surface. They are generated using anisotropic stretching in the region 
next to the boundaries. Each boundary edge of a solid surface contributes with unidirectional stretching 
in its normal direction. Nodes are influenced according to their position relative to the edges and all 
contributions affecting a node are maximized with the maximization procedure. 

The ‘vicinity of walls’ criterion is already used at the first generation of a mesh. To guarantee a 
proper resolution of the boundary layer during later adaptation, the stretching in the vicinity of the wall 
is remained. 

E m r  estimation for shear flows. The discretization error for viscous terms is dependent on the 
spatial change in these terms. This means that not the shear situation itself has to be resolved carefully, 
but its first derivative in space. Note that this is not true for unsteady spatial changes, e.g. shear layers 
when computing inviscid flows. Vorticity is a good indicator of a shear flow situation. Its gradient 
vector is therefore evaluated per node and used as unidirectional stretching. 

High-resolution spots. These may be placed interactively to increase the mesh resolution locally. 
The spots are introduced either by additional isotropic stretching, i.e. by simply multiplying the local 
stretching matrices by a factor, or by additional consideration of isotropic domain stretching within the 
maximization procedure. In the first case the refinement caused will approximately retain the aspect 
ratio of the triangles. In the second case the mesh resolution is only influenced in the directions in 
which the stretching of the spot is larger than the stretching caused by other features. Spots are frte in 
their geometry; they may be circular around points, be a thickened line or cover a polygon and they 
may be smoothed out on their boundaries. 

5 .  ADAPTATION FOR UNSTEADY FLOWS 
5.1. Principles of unsteady adaptation 

Since the generation and adaptation for a steady mesh comprise a process that can be interrupted and 
continued at any time, a simple version for an unsteady adaptation would be a continued meshing 
process while the flow computation advances. Some slight variations in the smoothing procedure even 
made it able to shift the points to optimized positions for longer distances; therefore a procedm able to 
take out points would not be required. Although this method produced very nice meshes, the 
computational results were poor. The reason is that all points are shfted always to new positions. Since 
the flow solver has not (yet) been formulated to discretize the equations on moving grids, an 
interpolation b m  one mesh to the other has to be performed. These repeated interpolations, presently 
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linear on triangles, act as a strong second-order damping. Thus dissipation is higher than without 
adaptation. 

One way to solve the problem is to use a higher-order interpolation. Another way is to declare a set 
of points to be saved, i.e. they are never taken out or shifted. In our case the points of the non-adapted 
mesh were chosen. Adaptations are made using additional points. A shifting of these points throughout 
the mesh is impossible owing to the rigidity of the saved points. Therefore a procedure to take out 
additional points is required. Reconnections via diagonal swapping are still allowed even if saved 
points are involved. 

Taking out points. In contrast with point insertion described at the beginning of the subsection, a 
take-out procedure is formulated If a point is surrounded by edges that in smtched space are shorter 
than the local quantity Gk multiplied by a statistical factor less than unity, an attempt is made to take 
out this point. All edges previously connected to that point will later be connected to its nearest 
neighbour. In rare cases the so-produced connectivity may contain triangles with negative orientation. 
If this error cannot be rearranged immediately, the original connectivity is restored and the point 
remains. 

The combined procedure. Mesh adaptation and flow computation run in a combined algorithm. 
Because data structures differ, intermediate routines are required as translators. The computations start 
on an initial mesh whose points will be saved. A previous solution on the non-adapted mesh is useful 
but not essential. The flow solver and the remeshing part work interchangeably, i.e. a mesh adaptation 
is performed in intervals. These intervals are chosen in such a way that the solution may not run out of 
adaptivity. 

Around lo0 adaptations an performed per flow cycle. Such an adaptation is a more or less empirical 
action sequence of the tools described. lLpically it is usell to first perform some loops taking out 
points, inserting new points, reconnecting edges and smoothing for a few steps. AAer that some further 
loops without taking points out or insemng new ones but with some more smoothing steps are 
perfOlTXled. 

The whole recurrent process is outlined as follows. 

(a) Apply flow solver for a set of time steps. 
(b) Compute stretching according to actual solution. 
(c) Store old mesh and solution. 
(d) Make a new mesh (adapting the old one). 
(e) Sort new mesh to impmve memory access. 
(f) Interpolate variables for additional points (presently linear on triangles of old mesh). 
(g) Translate data structures for flow solver. 

Items (b)-(g) make up the adaptive part of the computations. 

5.2. Computational examples 

The test example describes the subsonic flow at Ma, = 0.3 around an aerofoil with an angle of 
attack of 0". The flap is extended to 10". No turbulence model has been implemented yet; the Reynolds 
number is chosen as Re, = 10". This laminar test case therefore has no technical importance but is a 
well-suited example to demonstrate the ability to treat complex geometries and unsteady flow features 
with the present algorithm. 

The flow next to the aerofoil is nearly steady; in particular, the upper and lower separation points do 
not vary significantly. In the gap between foil and flap a flow is generated, directed to the upper side. 
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F i g m  5. Laminar, separated flaw mmd aerofoil with flap (Ma, = 0.3, Re, = I@). Computatim on d c  mesh. (a) Static 
mesh with around 16,000 grid pomts (not all shown hat). (b) lines of coastant vorticity at fixed the, computed on static me& 

This flow in- like a jet with the separated shear layer of the upper side. At the trailing edge of the 
flap, vortices start rolling up and generate a periodical vortex street farther downstream. 

Computations on static grids. The usual way to compute unsteady, vortical flows is to use time- 
independent, static grids. Then the mesh has to be sufficiently fine for resolving the moving flow at 
each location at each time. The present static mesh is preadapted to fit stationary f a a s  such as the 
boundary layer regions around the body. Figure 5(a) shows the non-adapted mesh with around 16,000 
grid points in total. The corresponding computed lines of constant vorticity mund  the aerofoil are 
presented in Figure 5@). The solution presents all essential features of the flow, but finer details in the 
shear layers and in the vortex core are smeared. 

Computations on dynamic grids. Despite the relatively high resolution in Figure 5 ,  some details of 
the flow, in particular the moving parts, are not sufficiently resolved. It would therefore be desirable to 
adapt the details using a moving, dynamic mesh such that zones of fine resolution move with the 
critical flow structures. 

A combination of a static mesh and a dynamic mesh with timedependent grid cell distributions is 
used here. The static mesh is the same as used before and shown in Figure 5(a). The dynamic grid 
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Figure 6. Computations 011 cunbincd static aod edapte4 dynamic mesh. L c g d  as m Figure 5. (a) Adapted mah (static arsd 
dynanuc mesh) at fixed time with ammd l6,W etatic and 6ooo dynamic grid points (not all .dmum h). (b) Liaes ofamstant 

vhc i ty  at fixed time, computed on timt-dcpcadcn 5 adaptsd mesh of(d 

consists of around 6000 additional grid points. Around 100 adaptations are performed per flow cycle. 
Figure qa )  shows the adapted mesh at a fixed time within one flow cycle. The comsponding lines of 
constant vorticity are plotted in Figure 6@). Comparison with Figure 5 @ )  indicates clearly the 
improvement with unsteady adaptation, where the details of the vortex flow arc much better 
repmentcd. Figure 7 demonshates the time dependence of the adaptive grid. These figures show a 
detailed portion of the mesh next to the flap at four different times within the flow cycle. These are four 
of around lo0 meshes required for one flow cycle. It is interesting to see that the unsteady flow features 
can be qualitatively represented by the grid cell distributions of the adapted mesh. 

The CPU time of the adaptation procedure is only a few per cent compared with the basic Runge- 
Kutta scheme. In combination with the much faster multisequence Runge-Kutta solver the adaptation 
procedure takes nearly 30% of the total CPU time. 

6. CONCLUSIONS 

An adaptive method for unsteady solutions of the compressible Navier-Stokes equations is presented. 
A finite volume discretization is applied for unstructured, triangulated grids. The mesh generation and 
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Figure 7. Squence of adapted meshes at four different times within one flow cycle. Legend as in Figure 5 

adaptation are based on a common algorithm, where the mesh adaptation is a continuation of the 
generation process. The adaptation concept, called virtual stretching, allows simultaneous adaptation 
with respect to different criteria. 

The method enables the computation of complex, unsteady flow features with an efficient explicit 
Runge-Kutta multisequence scheme, as presented in this paper. High resolution was achieved by using 
dynamic grids moving with the unsteady flow features. Turbulence modelling and extension to three- 
dimensional flows are goals of future developments. 
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