
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLULDS, VOL. 22, 85-101 (1995)

ADAPTIVE SOLUTIONS FOR UNSTEADY LAMINAR FLOWS
ON UNSTRUCTURED GRIDS

SUMMARY
An adaptive finite volume method for the simulation of timedependent, viscous flow is presented. The Navier-
Stokes equations are discretizad by central schemes on unstructured grids and solved by an explicit Rungo-Kutta
method. The essential topics of the present study are a new concept for a local RungcKutta time-stepping scheme,
called multisequence RungcKutta, which reduces the severe stability restriction in unsteady problems, a common
grid generation and adaptation procedure and the application of dynamic grids for capturing moving flow
structures. Results are presented for laminar, separated flow around an aerofoil with a flap.

KEY WORDS. Navicr-Stokes equatim; timedepmdmt, separated flow; umtwmd, adaptive, dynamic grids; local time-
stepping scheme

1. INTRODUCTION

Methods of solution based on unstructured grids enable a high degree of flexibility with respect to
solution-adaptive grid concepts. Grid cells can be added, removed or deformed during the solution
according to criteria derived h m requirements of accuracy. Therefore such adaptive methods are in
principle ideal methods to deal with flow problems of different characteristic scales, where a high
resolution is required in parts of the integration domain while in other parts a moderate resolution is
sufficient. In general the locations of high-resolution ranges are not known u prion. In non-adaptive
methods the solution has to be estimated before arranging the grid or a sufficiently fine, global grid has
to be used. Adaptive grid methods find these locations ‘automatically’during the solution and adapt the
grid to correspond to the actual solution. Thus the higher effort per grid point for unstructured,
adaptive methods can be compensated by the sparse, effective use of grid cells.

The difficulties in formulation and application of an adaptive method depend strongly on the
character of the solution. For inviscid flows, where besides geometrical features only distinct
discontinuities (shocks) appear, unstructured grids are very suitable, since their geometric fieedom and
the ease of adapting meshes to local requirements are often more important than the advantages of
structured meshes in terms of efficiency per node computed. A large number of applications can be
found in the literature (see e.g. References 1-3).

Solution of the Navicr-Stokes equations at high Reynolds numbers are in general much more
difficult to adapt and arc much less highly developed than for inviscid flows. A crucial problem is the
presence of very different viscous scale lengths in different directions, e.g. body length, boundary layer
thickness and vortex extensions. For adaptive methods the problem arises that often more than one
adaptation criterion, different in value and direction, has to be satisfied- Another numerical difficulty is
the genenition of deformed cells, e.g. ibt, triangular grids necessary to meet the anisotropic solution in
thin shear layers. These deformed cells can intmduce inaccuracies and an additional stiffness which

CCC 0271-2091/96/020085-17
0 1996 by John Wiley & Sons, Ltd.

Received December I993
Revised May I994

86 R. W M E I E R AND D. HANEL

impairs the performance of the solution algorithms. Despite these difficulties, various authors are
concerned with viscous computations on unstructured grids (see e.g. References 410).

A special challenge for adaptive methods is the computation of viscous, unsteady flows, which is the
topic of the present paper. Many viscous flow problems, in particular at high Reynolds numbers, can
become unsteady by self-induced flow separation, from which systems of moving vortices (vortex
streets) develop. Typical examples are the flow around aerofoils at high angle of attack and that behind
blunt bodies. The demands on an adaptive method for such flows are high. Firstly the algorithm has to
be sufficiently accurate in time. Using an explicit scheme, as done here, stability restrictions lead to a
severe reduction in efficiency owing to the very different sizes of grid cells. To reduce this effect in
timedependent flows, two extended versions of an explicit time-stepping Runge-Kutta scheme were
developed and tested. The two versions are based on the idea of increasing the stability limit locally
either by increasing the number of intermediate stages of the RungeKutta scheme or by applying
multiple sequences of the RungeKutta schemes with a constant number of stages.

To utilize the advantages of adaptive algorithms for unsteady solutions, a moving, dynamic mesh
should be used to adapt the details of the flow so that zones of fine resolution move with the critical
flow structures. A corresponding attempt is presented here based on a combination of a static mesh
superposed by an d d i t i o ~ l dynamic mesh with timedependent grid cell distributions.

The quality of the adaptive, timedependent algorithm is demonstrated by computational results for
laminar, separated flow over an aerofoil with a flap.

2. GOVERNING EQUATIONS AND SPATIAL DISCRETIZATION

2. I . Governing equations

The numerical solution is based on the two-dimensional, time-dependent Euler or Navier-Stokes
equations written in conservative integral form:

1 Q t d r + h (F - q d y - 4 (C - R) & = O .

Here

Q = , F =

J A J A

where Q is the vector of conservative variables, F and G describe the inviscid flux contributions (Euler
terms) and S and R are the viscous terms in a Cartesian frame (x,y, 1). The abbreviated terms in the
fluxes S and R are s4 = UT, + VT + qx and r, = 1 4 7 ~ + np + q,,, with T,, T~ and T~ the
components of the stress tensor of larmnar flow and qI and q,, the components of the heat flux vector a = IVT. The gas is assumed to be perfect.

xv

2.2. Spatial discmtization

A finite volume method is applied to discretize the conservation equations (1) in a mesh of
triangular control volumes around a point P(x,y). The discrete equations for the volume-averaged

UNSTEADY LAMINAR FLOWS ON UNSTRUCTURED GRIDS 87

Figure 1. Control volumes for node P Figure 2. BPsic cell for C ~ B C P1-P2

conservative variables Q on a node P read

where T is the area of the control volume and At is the time step. The residual Res,(P) is the steady
state operator, which consists of the discrete fluxes over the boundaries of the control volume.

The finite control volumes for the inviscid fluxes are defined here by a cell vertex arrangement,
resulting in a centd scheme of simple algorithmic structure. The boundaries of a cell vertex control
volume consist of natural edges of the mesh, as sketched in Figure 1 (outer contour).

For each ~tura l non-boundary edge the connectivity is stored in a basic cell consisting of the two
nodes forming the edge as well as the opposite nodes of the two neighbouring triangles (Figure 2). In
the cell vertex case the inviscid fluxes are computed as an average of neighbouring data over the edge
P1-P2 and distributed to the nodes P3 and P4.

Algorithms with central discretizations require additional artificial damping terms. The damping
terms are used as high-fraquency filters and 8n computed as fourth diffemces D, of the conmvative
variables. This is done by first computing the second differences D2 of variables for each node in the
form of an unweighted, discrete Laplacian. The fourth differences D4 are then computed as the second
differences of the values 4. This formulation cormponds in essence to that proposed by Mavriplis"
and offers a cheap way of computing the damping tenns. Obviously this simple formulation does not
hold for a linear field in a strongly stretched mesh; however, the damping terms are consistent and
small by definition.

The scheme based on central formulations of the inviscid tenns has proven to be well-suited not only
for the flows considered here but also for supersonic flows at moderatt Mach numbers. If, however,
strong shock waves are embedded, higher-order upwind schemes in conjunction with a nodeantred
arrangement achieve better results and are preferred for such problems in the place of central
schemes. lo

The viscous terms are approximated throughout by a nodeantred formulation. The control volumes
in nodecentred formulations are surrounded by a set of lines from the Ccntrts of the triangles to the
centres of the edges (Figure 1, broken line). First derivatives of the corresponding quantities of viscous
fluxes are calculated in each triangle and projected to the boundary segments of the nodecentred
volume. These fluxes are distributed to the nodes P1 and P2.

2.3. Memory access

The computations were performed on an RISC workstation. Owing to the limited size of the data
storage memory, it is essential to access the memory in as ordmd a way as possible, allowing the
computer to load packages of data for processing and thus avoiding wait states for memory requests.
There exist seweral methods for mesh reordering. However, a compromise between optimizing memory
access and the execution time for reording has to be made. Since in our case, owing to the adaptive
mesh, fkquent reordering is rqumd, a simple and very fast method is used.

88 R. VlLSMEIER AND D. HANEL

1. All nodes are sorted in a Cartesian direction.
2. The edges are sorted with increasing node addresses.

Although simple, the performance could be increased by a factor of two compared with unordered data
access.

3. INTEGRATION IN TIME

Integration in time is carries out by an explicit time-stepping RungeKutta scheme. The explicit
structure is well-suited for computations on unstructured grids because of its small range of coupling
with neighbouring cells. The Runge-Kutta time-stepping scheme is an approved concept for solutions
of the Euler and Navier-Stokes equations, in particular for steady state computations in combination
with additional acceleration Techniques such as local time steps, residual smoothing and multigrid.

For time-accurate computations the efficiency of an explicit scheme can be essentially impaired by
the stability restriction if the sizes of the discrete control volumes differ very strongly. Then only the
smallest value of all local time steps can be used, although in large parts of the integration domain
much larger steps could be chosen according to the stability limit. This situation is typical for adaptive
solutions where cells are concentrated in regions of strong changes and are removed in other ranges.

To overcome these severe restrictions for unsteady computations, two improved versions of the
explicit Runge-Kutta scheme were investigated and tested here. One version uses locally different
numbers of intermediate stages and the other version employs locally a multiple number of Runge-
Kutta sequences consisting of a constant number of intermediate stages. Both versions are based on the
idea of increasing the stability limit locally, where necessary, such that for all cells a large, global time
step (larger than the smallest one) can be used. In this case computational time can be saved, since
additional work is only necessary for cells with smaller characteristic time steps.

This principle itself is not new. 12*13 For the Euler or Navier-Stokes equations, however, a decoupling
in time between neighbowing nodes is not allowed. The reason is that the leading terms of these
equations are first or second derivatives in space. The calculation remains consistent in time if an
appropriate synchronization is used such that each evaluation of residuals uses quantities from
neighbowing points which are on the same time level.

In the following the basic Runge-Kutta scheme will be described briefly and both extended versions
will be discussed in more detail.

3.1. Basic Runge-Kutta scheme
The basic five-stage Runge-Kutta scheme reads

Q' = @ + al * CFL . At. Re&,

@=@+a2-CFL.At.Resk,

@=@+am.CFL.At.R@-',

@=P*
where Nk is the number of stages, ak are the Runge-Kutta coefficients, @ is the set of basic variables
and Q' to are represented by one set of intermediate variables. Generally five stages are used hem
with coefficients ak determined for second-order accuracy in time and maximum CFL number.

UNSTEADY LAMINAR FLOWS ON UNSTRUCWRED GRIDS 89

For the next two subsections the following definitions arc useful.

1. The basic time step AZb, i is the shortest time step in which characteristics starting anywhere at the
cell intcrhcc for a node i reach that node i. It is a local quantity and corresponds to the time stcp
for CFL = 1.

2. The minimum basic time step Atb, min is the lowest value of Atb, from all nodes.
3. Update means the action of updating intermediate variables in the Runge-Kutta cycle.

Evaluation (E) is the action of determinin g a new residual. Its prerequisite is an update. Storing
(S) is the action of storing intermediate variables onto the basic variables. Its prerequisite is an
update.

3.2. Runge-Kutta scheme with variable number of stages

The idea of this approach uses the fact that the largest CFL number of a time-stepping scheme given
by a stability analysis haeases with the number of intermediate stages. For a corresponding linear
equation the largest CFL number is related to the number Nk of RungcKutta stages by

C F L . , = Nk- 1. (3)
Since the ‘wont’ node runs with a very large number of stage, A%.,-, and therefore with a high

CFL number, other more stable nodes i may perform the same time step with a l o w number of stages,
Mi. Using the theoretical values of equation (3), one obtains the required number of stages per node i
as

+ 1. mi = (& - 1)- Atb, min

1
(4)

As discussed above, each nsidual evaluation requires neighborn at the same level of time also at
the intermediate levels. For the upper stages this is automatically the case if the time-accurate Rungo
Kutta caefficients

ak = (M - A + I)-’ (5)

are used, where A is the stage within the cycle. From high to low these coefficients are 1, !,+, $, A
problem arises for the lower stages if two neighbours qu i r e different numbers of stages. Let j be the
neighbour of i with the following condition: MI > Mj. For the stages 1 Q k c MI - Nkl the node j has
to be updated, although this would not be required for its own RungcKutta cycle. These low-stage
updates for the nodej 8n done using the residual computed at stage 0, i.e. the beginning of the Runge-
Kutta cycle. The nodej is allowed to be updated with old residuals, since there is no characteristic
starting at its cell interface at stage 0 that may overrun it in the first %. - Mj stages. This is in contrast
with equation (4). Nodes farther away do not need to be on time if none of their neighburs requires a
residual evaluation.

Gmuping concept. We would probably lose all potential gain in performance if each node werc
treated individually. Thus a grouping concept is required Groups are identified by the number of
states, Mi, requind by their nodes. Since the variety of basic time steps &b,i is large, it is also
appropriate to choose a large variety of stage numbers 4. In our computations we choose groups with
the following numbers of stages:

Mg = 2-8, (6)

where g is the group index and ng is the number of groups.

R. VILSMEIER AND D. HANEL

lsl El m

:E: L

g = 1 9 = 2 g = 3

Figure 3. Evolution in time for RungtKuna scheme with vanable number of intermediate stages. Example for thrrc groups
based 011 powm of two. U. update; E, evduatc residual; S. storing; T = t/(CFL.&,-)

Note that the number of stages for groups, Equation (6). may be chosen in any other convenient
monotonically decreasing order. Figure 3 shows an example for a three-group Runge-Kutta scheme
based on powers of two. After analysing the limits for each node, Equation (4), they are inserted in the
groups with the next higher value Nk,, ensuring that neighbowing nodes never have a group index
difference greater than one. This is done by a recursive loop over all edges as they address
neighbowing nodes. The edges themselves are sorted using the same grouping concept. All edges get
the lowest group index of the four nodes they support (see Figure 2).

Evaluation and update rule. Since the number of stages in the groups decreases monotonically with
the p u p index, a residual evaluation for group g is always accomplished by an evaluation of all
groups from 1 to g - 1. We may therefore formulate the following evaluation (E) and update rule.

For the residual evaluation (E) up to group g the fluxes over all edges in groups 1 to g have to be
computed. This requires a previous update (v) of all nodes in groups 1 to mink + 1, ng).

It has to be mentioned that there is a slight time delay for the fourth-order damping terms D.,, since
these terms require data from up to the second neighbouring cells. The effect is negligible if the second
differences D, (see Section 2.2) from the lower time level are stored and thus available.

Computational eflciency. Test calculations have shown that the concept of a variable number of
intermediate stages performs sufficiently well, but the algorithm did not improve its computational
speed as much as expected from the linear theory. The essential reason is that the CFL number of the
non-linear system of equations does not rise with the number of stages as expected fiom the linear
theory, Equation (3). Upon testing the basic versions of the Runge-Kutta scheme with various numbers
of stages, it was found that a three-stage Runge-Kutta scheme with CFL = 1 -2 runs well, while a 64-
stage Runge-Kutta scheme fails except with CFLG8.0. The relatively low CFL condition for large
stage numbers reduces considerably the global advance in time. Computations with the Runge-Kutta
scheme with a variable number of stages result in a speed-up factor of only around two compared with
a carefully tuned five-stage basic algorithm.

UNSTEADY LAMINAR FLOWS ON UNSTRUCTURED GRIDS 91

3.3 Multisequence Runge-Kutta scheme

The discouraging results of the Runge-Kutta scheme with a large number of stages means that we
probably went in the wrong direction. Experiences in many applications have shown that the Runge-
Kutta scheme is most efficient in non-linear cases for a moderate number of intermediate stages.
Keeping the number of stages constant now, usually between three and five, the maximum time step
can be increased by employing a sequence of complete Runge-Kutta cycles locally, where the number
of cycles can vary from point to point. Thus one Runge-Kutta cycle at a node i may be a &tion of a
cycle of another node j .

The cycle fraction is computed in a similar way as described in the previous subsection. Again
compared with the worst condition, the cycle M o n is defined as

ci=-----. min

i
(7)

If, for example, a node i has to perform one cycle, the worst node has to perform more than one cycle,
namely I/Ci cycles.

Sjmchmnization und pup ing concept. To ensure accuracy in time, the sequences and intermediate
stages have to be synchronized. Essential for the evaluation of the residuals is to provide updated
variables at neighbouring nodes which are on the same time level.

The levels of the intermediate stages are determined by the coefficients ak of the Runge-Kutta
scheme. The following set of coefficients has allowed synchronization:

at = (yy (8)

where again Nk is the number of stages and R is the stage. From high to low these Coefficients are 1, k,
f , i, Note that second-order time accuracy is guaranteed, since the two highest coefficients are 1
and f and that the set is near the set of maximum CFL number. With the coefficients (8) the time levels
fit each other if the cycle fractions Ci are powers o f f (see Figun 4). Following the grouping idea
mentioned in the previous subsection, groups of the same cycle fraction are introduced

C , = (f) g - ' , g = 1 , 2 , 3 , (9)

All nodes are now analysed for their individual cycle fraction and then inserted in the group with the
next higher value C,. Again two neighbouring nodes may never have a p u p index difference greater
than one. Edges are grouped as in the previous subsection. They get the lowest group index of the four
nodes they support.

Evaluation and update rule. The evaluation and update rule is the same as formulated for the
scheme with a variable number of stages. Additionally, a storing (S) is performed for all members of
groups reaching the end of a cycle. A complete time step is finished when the group with the lowest
cycle fraction, 1.e. the group with the highest index g = ng, has finished one cycle. The physical time
for this step is

At = CFL * At,,- * 2",-', (10)

where CFL is the CFL number for one Runge-Kutta cycle. Figure 4 shows an example for a three-
group, three-stage Runge-Kutta scheme.

Computational eficiency. The multisequence Rung*Kutta scheme was applied to the problem of
viscous, umteady flow around an aemfoil, as described later. The multisequence RungeKutta scheme
with three stages and six p u p s was compand with the basic five-stage scheme. After several

92 R. VILSMEIER AND D. U N E L

0 . 5 0 4 8
0.W
0.00 E E

g = l g = 2 g = 3

F i p 4. Evolution in time for multiscqwux time-stepping scheme. Example for thne groups and three stages. U, update;
E, evaluate midual, S, storing; T = r/(CFL.&,,)

thousand time steps of the basic scheme the solutions of the two methods were identical at the same
physical time, which confirms the time consistency of this concept. The measured gain in
computational time was a factor of six compared with the basic scheme. This means that the
multisequence Runge-Kutta scheme is much more effective for unsteady problems than the scheme
with a variable number of stages for the same example (factor of two).

A higher number of groups would increase the speed-up factor of the multisequence Runge-Kutta
scheme, since most of the nodes still reside in the last p u p . On the other hand, the timelaccuracy
would then become critical. It should be mentioned that the speed-up factor is strongly dependent on
the test case.

Compurkons with other time integmtion schemes. In comparing the efficiency of the proposed
method with what is attainable by other enhanced time integration schemes, it is essential to note that
the present multisequence Runge-Kutta scheme reduces the local stiffness and a gain is achieved only
if the allowable time steps and cell sizes, vary essentially.

The scheme presented here can be compared with a similar approach, namely domain splitting for
explicit schemes as proposed by Lijhner et ul? The basic idea of this scheme is to split the whole
domain into subdomains where a common time step is used. To achieve time consistency, the
neighbouring domains are coupled via overlapping zones.

In contrast with domain splitting, the present multisequence Runge-Kutta scheme acts on each node
locally and contains implicitly the time coupling between neighbouring nodes owing to the
synchronization concept. The advantage is that the grouping of nodes and edges no longer requires any
overlapping zones or special treatment on domain boundaries. Therefore the implementation is
relatively simple and very flexible in terms of local time step restrictions. The computational overhead
is so low that the grouping of nodes and edges can be done prior to each global time step, which
enables the use of this algorithm for dynamic meshes.

UNSTEADY LAMINAR FLOWS ON UNSTRUCTURED GRIDS 93

Multigrid schemes are able to increase the overall efficiency, but the number of grid levels, and
consequently the convagence, is restricted in unsteady computations for reasons of accuracy in time.
Besides, additional convergence losses of multigrid schemes arise for strongly anisotropic grids, a
typical effect in computations of high-Reynolds-number flows. Numerical expiments with a time-
accurate FAS multigrid method for a similar problem (vortex street behind a cylinder) but on structured
grids have shown a +-up factor for multigrid of about two against a single-grid, basic five-stage
Runge-Kutta scheme.'4

Implicit time integration schemes also reduce the problem of local stifhess and allow a much larger
time steps than explicit schemes. On the other hand, the time accuracy can be impaired in regions with
small physical scale lengths where the local CFL number is large. A decrease in the global time step in
such cases would reduce the efficiency of the implicit method.

4. MESH GENERATION AND ADAPTATION

Unstructured mesh generation is a mixed discrettxmalogue optimization problem. The number of
points and their connections to triangles are discrete; the position of the points can be considered as the
analogue part. Such optimization problems are approximated by interchanging solutions of the
analogue and discrete parts.

The generation consists of several tools, as described in the following, which act together on a
closed triangulation. The process might be interrupted for a flow computation and continued for a
following adaptation. Thus the steps of the mesh optimization problem are common for the generation
as well for an adaptation of the mesh.

The applied method is a field methad. The very first step is the generation of a mesh consisting of a
triangulation between given boundary points of the domain. This input is produced by a rising bubble
triangulation

4.1. Genemtion tools

Local mesh density. This is represented by the locally preferred length Gk of the edges of a triangle
and is stored per node.

For boundary points this quantity is the length of the longer of the two boundary cdges mund such
a point multiplied by a statistical factor.

For interior points a smooth variation in the size of triangles within the boundaries of the domain is
desired. This requires the solution of a boundary value problem for the local mesh density. Since the
boundary points and edges of the domain are known at the beginning of the genmtion process, the
function Gk can be computed in advance; it does not therefore take part in the optimization process.
However, there is no mesh yet to support the solution. Therefore the quantity G, for the interior nodes
is computed during the development of the mesh. This is done in a point GausAeidel fashion by
solving the equation

v - = o . *o
Another very common approach is to provide a mesh density function on a background mesh. This

approach was not used, since more interaction would be required.

Point insertion. Additional points are inserted in the centre of all triangles under the following
condition. At least one of the edges is longer than the local quantity Gk, defined above and none of the

94 R. VILSMEIER AND D. HANEL

neighbouring triangles has already been refined in the same insertion loop. The insertion is done in this
sparse way in order to avoid a sudden point overflow.

Additional boundary points are inserted in the centre of the boundary segments. This may only be
necessary in conjunction with stretching (see next subsection).

Edge reconnection. Two edge reconnection tools are employed, both based on diagonal swapping.
The aim of the first one is to generate triangles which fit the Delaunay criterion. The second one
reorganizes the mesh to obtain a trianguhon with, as far as possible, six triangles around a common
node. Since the two tools conflict, a compromise is taken.

Smoothing. Smoothing is done to increase the grid quality by mursively moving the points to
optimal positions. The smoothing procedure is based on the circumcircle areas of the triangles and
formulated as the minimization of a sensitive quantity TS for all triangles of the mesh:

where A&) is the circumcircle area of triangle i, A,(i) is the area of triangle i, ntr is the number of
triangles, w is a weighting term for balanced triangle sizes and Gk(i) is the average quantity Gk for
triangle i.

Depending on the weighting exponent w, the triangle sizes or their forms are more important. For
w = 1 the criterion takes care only of the forms of the triangles and disregards their sizes; thus zones of
higher and lower density can appear. The problem arises only in the vicinity of points surrounded by a
number of triangles, "D, not equal to six. The reason for this problem is the fact that triangles of
number unequal to six surrounding one point cannot be equilateral. To compensate this drawback, all
the triangles consisting of points with different values n D are geometrically transformed according to
those numbers before being processed by the smoothing procedure. The transformation takes care of
the fact that an optimal intemal angle adjacent to a point is a* = 2n/nD. A triangle with three optimal
internal angles would be transformed into an equilateral triangle; this form is considered optimal in the

The minimization is carried out by a pointwise, two-dimensional Newton method, i t e d h g spatial
smoothing p d u r e .

derivatives of the quantity to be minimized to zero.

where Ts(P) is the part of Ts influenced by the position of the node I? This is the sum of the sensitive
amounts for all triangles having the node P as vertex. X(P) and Y(P) the co-ordinates of the node I?

To ensure global minimization of Ts, the pointwise minimization is performed recursively in a point
Gauss-Seidel procedure with unsorted address sequences.

This smoothing procedure consumes a considerable amount of computational time compared with
other methods, e.g. Laplacian smoothem, averaging the location of neighbouring points. The
advantages, however, that there may not appear any invalid triangulations and that too flat triangles
are avoided, which is important for unsteady flow computations with global time stepping.

4.2. Adaptation by virtual stretching

The aim of the generation procedure, as described above, is to genemte a smooth homogenmus
triangulation without any directionality. Only the density function was used to allow a smooth change
between boundary lines with smaller or longer segments. Virtual stretching is used to generate flat

UNSTEADY LAMINAR FLOWS ON UNSTRUCTURED GRIDS 95

triangles and as an additional adaptation tool. The implementation is rather simple Mesh generation no
longer proceeds in the physical plane but in a local@ stretched one. Transformation back to physical
co-ordinates yields meshes with anisotropic resolution or refined zones.

Stretching is internally rep~sented by symmetric 2 x 2 matrices for each point of the developing
mesh (generation) or the previous mesh (adaptation):

a l l a12
.=(.I2 “22) .

The stretching caused by such a transformation matrix is dependent on the angle 0 in the Cartesian
plane. It is defined as the projection of the transformed unit vector in the direction of 0 onto this
original direction:

S,(0) = @) * (A ’ a(@)). (15)

Tvpes of stretching

The way in which the stretching acts is best understood for the transformation of a unit circle.
Isotopic or scalar stretching shows no special orientation in the plane. A unit circle would be

transformed into a larger circle. The stretching matrix is the unit matrix multiplied by a factor. The size
of the triangles in physical space is reduced by this htor.

Anisotropic or tensoriuf stretching is the more general case. A unit circle would be transformed into
any ellipse concentrically containing it. The scaling length of the triangles in physical space is reduced
according to the length of the semiaxis of this ellipse.

Unidirectional or vectoriuf stretching is a special case of anisotropic stretching. A unit circle would
be transformed into an ellipse tangent to the unit circle in the direction of the smaller semiaxis.

Computing the stretching matrices

Suppose that the mesh resolution in physical space is to be locally increased by a given factor R, in
the direction of a,, while in the direction O2 perpendicular to O1 the resolution is to be increased by a
factor R2.

and
R, = S,(0,) in the direction of O2 while generating the mesh.

This requires local stretching of the domain by a Factor RI = S,(@,) in the direction of

Regarding the transformation of unit vectors in the two perpendicular directions, one obtains

R1381) = A * ‘4@1), R23@2) = A - 3 9 2) . 8 2 = 8, 4- n/2.

The matrix A that satisfies these equations reads

Rl sin2 (0,) + R2 cos2 (el)
(R, - R2) sin (0l)tOS (0 1)

(R1 - R2) sin (el)cos (el)
R1 C O S ~ (01) + R2 sin2 (01)

Combining sevmal stretchingproperties. Special carc is taken to combine different local resolution
requirements, since several features are considered. This is done by a two-dimensional maximizition
procedure. Input are the stretching matrices A l , A2, . . , from all featuns to be considered for the
regded location. The h i r e d output of the pointwise maximization is a matrix A, containing all
stretching properties of the input matrices with minimized determinan 1.

S,=(@)> max (SA,(0), SA2(0), . . .) for 0 5 0 < K, det (A,) = min. (16)

96 R. VILSMEIER AND D. U N E L

The minimum determinant is desired to minimize the number of points in the later mesh, since the
determinant of the stretching matrices is the relation of areas between the virtual and physical planes.

Because of the difficulties in solving this problem, a recursive routine is applied which is able to
maximize two matrices in one step. If more than two stretching matrices have to be combined, the
previous maximum is kept to be maximized with the next input matrix. Note that if more than two
matrices are involved, the exact minimum possible determinant is not obtained.

Features causing stretching

complete, since only the features used for the present computations are presented.
Several features require different minimal resolutions in different directions. The list below is not

Vicinity of walls. The boundary layer of viscous flows next to solid surfaces has to be resolved by
flat triangles oriented along the surface. They are generated using anisotropic stretching in the region
next to the boundaries. Each boundary edge of a solid surface contributes with unidirectional stretching
in its normal direction. Nodes are influenced according to their position relative to the edges and all
contributions affecting a node are maximized with the maximization procedure.

The ‘vicinity of walls’ criterion is already used at the first generation of a mesh. To guarantee a
proper resolution of the boundary layer during later adaptation, the stretching in the vicinity of the wall
is remained.

E m r estimation for shear flows. The discretization error for viscous terms is dependent on the
spatial change in these terms. This means that not the shear situation itself has to be resolved carefully,
but its first derivative in space. Note that this is not true for unsteady spatial changes, e.g. shear layers
when computing inviscid flows. Vorticity is a good indicator of a shear flow situation. Its gradient
vector is therefore evaluated per node and used as unidirectional stretching.

High-resolution spots. These may be placed interactively to increase the mesh resolution locally.
The spots are introduced either by additional isotropic stretching, i.e. by simply multiplying the local
stretching matrices by a factor, or by additional consideration of isotropic domain stretching within the
maximization procedure. In the first case the refinement caused will approximately retain the aspect
ratio of the triangles. In the second case the mesh resolution is only influenced in the directions in
which the stretching of the spot is larger than the stretching caused by other features. Spots are frte in
their geometry; they may be circular around points, be a thickened line or cover a polygon and they
may be smoothed out on their boundaries.

5 . ADAPTATION FOR UNSTEADY FLOWS
5.1. Principles of unsteady adaptation

Since the generation and adaptation for a steady mesh comprise a process that can be interrupted and
continued at any time, a simple version for an unsteady adaptation would be a continued meshing
process while the flow computation advances. Some slight variations in the smoothing procedure even
made it able to shift the points to optimized positions for longer distances; therefore a procedm able to
take out points would not be required. Although this method produced very nice meshes, the
computational results were poor. The reason is that all points are shfted always to new positions. Since
the flow solver has not (yet) been formulated to discretize the equations on moving grids, an
interpolation b m one mesh to the other has to be performed. These repeated interpolations, presently

UNSTEADY LAMINAR FLOWS ON UNSTRUCTURED GRIDS 97

linear on triangles, act as a strong second-order damping. Thus dissipation is higher than without
adaptation.

One way to solve the problem is to use a higher-order interpolation. Another way is to declare a set
of points to be saved, i.e. they are never taken out or shifted. In our case the points of the non-adapted
mesh were chosen. Adaptations are made using additional points. A shifting of these points throughout
the mesh is impossible owing to the rigidity of the saved points. Therefore a procedure to take out
additional points is required. Reconnections via diagonal swapping are still allowed even if saved
points are involved.

Taking out points. In contrast with point insertion described at the beginning of the subsection, a
take-out procedure is formulated If a point is surrounded by edges that in smtched space are shorter
than the local quantity Gk multiplied by a statistical factor less than unity, an attempt is made to take
out this point. All edges previously connected to that point will later be connected to its nearest
neighbour. In rare cases the so-produced connectivity may contain triangles with negative orientation.
If this error cannot be rearranged immediately, the original connectivity is restored and the point
remains.

The combined procedure. Mesh adaptation and flow computation run in a combined algorithm.
Because data structures differ, intermediate routines are required as translators. The computations start
on an initial mesh whose points will be saved. A previous solution on the non-adapted mesh is useful
but not essential. The flow solver and the remeshing part work interchangeably, i.e. a mesh adaptation
is performed in intervals. These intervals are chosen in such a way that the solution may not run out of
adaptivity.

Around lo0 adaptations an performed per flow cycle. Such an adaptation is a more or less empirical
action sequence of the tools described. lLpically it is usell to first perform some loops taking out
points, inserting new points, reconnecting edges and smoothing for a few steps. AAer that some further
loops without taking points out or insemng new ones but with some more smoothing steps are
perfOlTXled.

The whole recurrent process is outlined as follows.

(a) Apply flow solver for a set of time steps.
(b) Compute stretching according to actual solution.
(c) Store old mesh and solution.
(d) Make a new mesh (adapting the old one).
(e) Sort new mesh to impmve memory access.
(f) Interpolate variables for additional points (presently linear on triangles of old mesh).
(g) Translate data structures for flow solver.

Items (b)-(g) make up the adaptive part of the computations.

5.2. Computational examples

The test example describes the subsonic flow at Ma, = 0.3 around an aerofoil with an angle of
attack of 0". The flap is extended to 10". No turbulence model has been implemented yet; the Reynolds
number is chosen as Re, = 10". This laminar test case therefore has no technical importance but is a
well-suited example to demonstrate the ability to treat complex geometries and unsteady flow features
with the present algorithm.

The flow next to the aerofoil is nearly steady; in particular, the upper and lower separation points do
not vary significantly. In the gap between foil and flap a flow is generated, directed to the upper side.

98 R. VILSMEIER AND D. HANEL

F i g m 5. Laminar, separated flaw mmd aerofoil with flap (Ma, = 0.3, Re, = I@). Computatim on d c mesh. (a) Static
mesh with around 16,000 grid pomts (not all shown hat). (b) lines of coastant vorticity at fixed the, computed on static me&

This flow in- like a jet with the separated shear layer of the upper side. At the trailing edge of the
flap, vortices start rolling up and generate a periodical vortex street farther downstream.

Computations on static grids. The usual way to compute unsteady, vortical flows is to use time-
independent, static grids. Then the mesh has to be sufficiently fine for resolving the moving flow at
each location at each time. The present static mesh is preadapted to fit stationary f a a s such as the
boundary layer regions around the body. Figure 5(a) shows the non-adapted mesh with around 16,000
grid points in total. The corresponding computed lines of constant vorticity mund the aerofoil are
presented in Figure 5@). The solution presents all essential features of the flow, but finer details in the
shear layers and in the vortex core are smeared.

Computations on dynamic grids. Despite the relatively high resolution in Figure 5 , some details of
the flow, in particular the moving parts, are not sufficiently resolved. It would therefore be desirable to
adapt the details using a moving, dynamic mesh such that zones of fine resolution move with the
critical flow structures.

A combination of a static mesh and a dynamic mesh with timedependent grid cell distributions is
used here. The static mesh is the same as used before and shown in Figure 5(a). The dynamic grid

UNSTEADY LAMINAR FLOWS ON UNSTRUCTWED GRIDS 99

Figure 6. Computations 011 cunbincd static aod edapte4 dynamic mesh. L c g d as m Figure 5. (a) Adapted mah (static arsd
dynanuc mesh) at fixed time with ammd l6,W etatic and 6ooo dynamic grid points (not all .dmum h). (b) Liaes ofamstant

vhc i ty at fixed time, computed on timt-dcpcadcn 5 adaptsd mesh of(d

consists of around 6000 additional grid points. Around 100 adaptations are performed per flow cycle.
Figure qa) shows the adapted mesh at a fixed time within one flow cycle. The comsponding lines of
constant vorticity are plotted in Figure 6@). Comparison with Figure 5 @) indicates clearly the
improvement with unsteady adaptation, where the details of the vortex flow arc much better
repmentcd. Figure 7 demonshates the time dependence of the adaptive grid. These figures show a
detailed portion of the mesh next to the flap at four different times within the flow cycle. These are four
of around lo0 meshes required for one flow cycle. It is interesting to see that the unsteady flow features
can be qualitatively represented by the grid cell distributions of the adapted mesh.

The CPU time of the adaptation procedure is only a few per cent compared with the basic Runge-
Kutta scheme. In combination with the much faster multisequence Runge-Kutta solver the adaptation
procedure takes nearly 30% of the total CPU time.

6. CONCLUSIONS

An adaptive method for unsteady solutions of the compressible Navier-Stokes equations is presented.
A finite volume discretization is applied for unstructured, triangulated grids. The mesh generation and

100 R. VILSMEIER AND D. HANEL

Figure 7. Squence of adapted meshes at four different times within one flow cycle. Legend as in Figure 5

adaptation are based on a common algorithm, where the mesh adaptation is a continuation of the
generation process. The adaptation concept, called virtual stretching, allows simultaneous adaptation
with respect to different criteria.

The method enables the computation of complex, unsteady flow features with an efficient explicit
Runge-Kutta multisequence scheme, as presented in this paper. High resolution was achieved by using
dynamic grids moving with the unsteady flow features. Turbulence modelling and extension to three-
dimensional flows are goals of future developments.

REFERENCES

1. R. Ghnn and J. D. Baum, 'Numerical simulation of shock interaction using a new adaptive h-refinement scheme on

2. T. J. Baker and A. Jnmtson, 'Improvements to the aircraft Euler Method,' A M Paper 197-0452. 1987.
3. J. Pemirc, L. Formaggio, K. Morgan and 0. C. Zimkiewicz, 'Finite element Euler computations in three dimensions,' AIM

4. D. J. Mavriplis and A. Jameson, 'Multigrid solution of the Navia-Stokes equation on triangular meshes,' AUA 1 28,141 5-

5. I! K. Rabhu, J. R. Stewart and R. R. Thareja, 'A Navia-Stokes solva for high speed equilibrium flows and application to

6. K. Morgan, J. Peraire and J. F'eh. 'Unstructurrd grid methods for compressible flows,' in Special Course on Unsbucrured
Grid Methoakfbr Advection Dominated Flows, AGARD Rep. R-787, pp. 5-1-5-39, 1992.

7. R. Uhner, K. Morgan, J. P& and M. Vahdati, 'Finite element fluxcorrected transport for the Eula and Navier-Stokes
equations,' Inf. j . numer methodsfhidr, 7, 1093-1 109 (1987).

8. M. Mallet, 'Adapted finite element methods for hypersonic m n h y problems,' in 7'hinf Join? Eump&S. Short Course in
Hypersonics, RWTH, Aachen, 1990.

9. R. Vilsmeia and D. Hiinel, Adapbve solutions for comprrssible flows on unstruaured, strongly anisotropic grids,' in
C. H h h . J. Pcriaux and W. Kordulla (eds), Computational Fluid Dynamics '92, Vol. 11, Elsevier, Amsterdam, 1992,
pp. 945-952.

10. M. Gehk, D. Hhel and R. Wlsmcier, 'Adaptive grid methods for viscous Row,' Pmc. 5th In?. Symp. on Computational Fluid
Dynamics, H. Daigud, Japan Sociely of Computational Fluid Dynamics, pp. 247-252, Sendai, August-September 1993.

uwntaud grids,' AIM Paper 90-0700.1990.

!+per 884032, 1988.

1425 (1990).

blunt bodies,' AL4A Paper 89-0668, 1989.

UNSTEADY LAMINAR FLOWS ON UNSTRUCTURED GRIDS 101

1 1 . D. J. Mawiplis, ‘Solution of the two-dimensional E d a equations on unstructured triangular meshes,’ Thcsir, Princeton
Univmity, 1987.

12. M. Pervpiz and J. Baron, ‘Spatiotcmporal adaption algorithm for hvodhemional reacting flows,’ AM 1, 27, 237-252
(1 989).

13. R. LAncr, K. Morgan and 0. C. ZicnkicWin, ‘The use of domain splitting with an explicit hyperbolic solver,’ Compuf.
M e w Appl. Mech. Eng.. 45,313-329 (1984).

14. M. Mcinke and D. H i d , ‘The iwcuale multigrid solutionS of thc Navia-Stokcs equations,’ Inf. Set: Numm Mad., 98,
289-300 (1991).

15. R. Vilsmeier and D. H k l . ‘Generation and edapgtioa of 2-D unsbuctud meshes: in A. S . Arcila, J. Hauser, I? R. Eiseman
and J. F. Tlmmpmn (eds.). N u m e r i d Grid Gsrermion in complctotional Fluid qnmmrcC and Rclolcd Fuh, North-
Holland, Am&dm, 1991, pp. 55-66.

